

SIZE EFFECT AND CYLINDER TEST ON SEVERAL COMMERCIAL EXPLOSIVES

P. C. Souers, L. Lauderbach, K. Moua, R. Garza

August 17, 2011

2011 APS Shock Conference Chicago, IL, United States June 26, 2011 through July 1, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

SIZE EFFECT AND CYLINDER TEST ON SEVERAL COMMERCIAL EXPLOSIVES

P. C. Souers, L. Lauderbach, K. Moua and R. Garza

Energetic Materials Center Lawrence Livermore National Laboratory Livermore, CA 94550

Abstract. Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.

Keywords: Size effect, diameter effect, detonation velocity, detonation energy, Cylinder test

PACS: 82.33.Vx, 82.40.Fp

INTRODUCTION

The size (diameter) effect for detonation velocity [1] and the copper-wall Cylinder test for detonation energy density [2-4] are basic measures of detonation.

Kinepak is a commercial mixture nominally of AN 79 wt%/NM 21. The old version contained 2.9 wt% glass microballoons and the new (from shot 750 on) 4.0%. The old AN contained 30-150 μ m grains with a peak at 60 μ m and the new AN is coarser. The liquid is added just before shooting and the absorption appears uniform. About 13 psi pressure is used to compact the powder to an optimum and reproducible density.

Semtex 1A is PETN 83.5, semtexoil 12.4, and rubber 4.1. Semtex H or 1H is RDX 60.5, PETN 25.0, semtexoil 11.6, rubber (styrene/butadiene) 2.9.

EXPERIMENTAL PROCEDURE

The detonation velocities were measured with shorting pin rings placed 1/3 of the way and at the end of the cylinder. The standard deviation comes from comparing two rings with 6 pins each.

The Cylinder Tests measure the wall velocity of precision-machined copper cylinders using PDV (photon Doppler shift or heterodyne) [5]. The detonation runs upward with multiple PDV's along the way. The aluminum rack that holds the cylinder has been made studier to keep the probe angles constant. A 7° PDV probe angle is generally used.

RESULTS/DISCUSSION

Table 1 lists the size effect data for three explosives. The average detonation rate, v, is inversely proportional to the slope by way of

$$v \approx \frac{-D^2}{dU_s / d(1/R_o)} \tag{1}$$

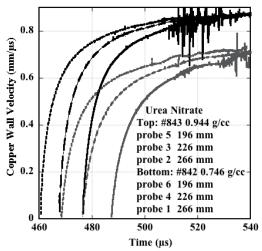

where U_s is the detonation velocity at radius R_o and D is the detonation velocity at infinite radius. The Kinepak rate is 4.0 μs^{-1} in metal and 1.2 μs^{-1} in plastic. These are low, ANFO-like, non-ideal values. The Semtex rate cannot be quanitified, but it is clearly large, perhaps 200 μs^{-1} .

Table 2 lists the Cylinder test results. Today's Cylinder test analysis calculates the detonation energy density while accounting for the angle of the PDV probe [4], with the energy varying as the cosine of the probe angle. Table 2 lists results for Semtex H with six probes at the same distance down the cylinder but with probe angles from 5 to 10°. The velocities are the same within error, showing that the effect of angle error is indeed small.

With many probes with modern accuracy, we may check two other issues regarding the Cylinder test. One is whether anything unusual occurs because the detonation velocity of the explosive is less than the sound speed in the copper wall. Our best example is the pure component urea nitrate, which was measured at 0.746 and 0.944 g/cc with a 25.4 mm diameter and gave detonation velocities of 3.28 and 4.41 mm/µs. As shown in Figure 1, both came to the expected steady state conditions despite the probable run-ahead in the copper wall.

The second issue is whether the Cylinder test really comes to steady state in the length allowed. Previously, we measured only a single value 72% of the way down the tube. We now find that wall velocities suitable for conversion to energy densities may be measured from 46 to 87% of the way down the tube.

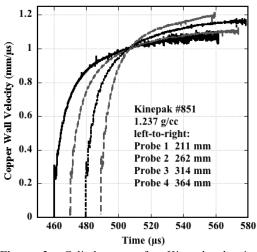

Figure 3 shows the results for a 25.4 mmdiameter cylinder of Kinepak and the curves rise steadily as the detonation progresses down the cylinder. This could be evidence of a second slower reaction. We next convert wall velocities to detonation energy densities and plot them as a function of the detonation front time down the tube in Figure 4 [3]. The curves are at the three standard relative volumes that go with the scaled displacements in Table 2. It is difficult to judge the later reaction because it is not leveling off but appears to be increasing. We also plot the calculated points using CHEETAH V6, and the final measurements have reached these values.

Figure 1. Wall velocities of urea nitrate at two densities, showing normal Cylinder behavior.

The times in Figure 2 suggest a rate of perhaps $0.02~\mu s^{-1}$, which is one hundred times slower than the primary rate. This would require a two-rate reactive flow model and explains why the one-rate model was inadequate.

Another answer is that this behavior comes from large density gradients. The shot was fired upward, so that denser material would be expected at the bottom of the cylinder if settling occurred. At present, this result is mysterious.

Figure 2. Cylinder test for Kinepak showing continued reaction down the cylinder

CONCLUSIONS

Working with powdered explosives has the further challenge of wide swings in achieved density. However, the Cylinder test gives good information despite having low-detonation-velocities relative to the copper sound speed. Some explosives may have more than a single overall reaction.

ACKNOWLEDGEMENTS

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

TABLE 1. Size (diameter) effect data for Kinepak.

Density,	Radius,	Detvel,	stdev,	Wall	Wall,	Length,	Shot
 g/cc	mm	mm/μs	mm/μs	material	mm	mm	No.
 1.25	25.85	5.46	0.021	steel	2.83	508	666
1.24	25.38	5.29	0.008	steel	5.22	458	851
1.20	12.71	5.13	0.014	copper	2.61	305	657
1.16	6.56	4.62	0.046	steel	2.90	254	665
1.05	6.35	3.92	0.014	copper	1.36	152	750
1.25	4.76	4.00	0.034	steel	1.54	257	668
1.17	3.98	3.17	0.028	steel	2.37	254	681
1.24	3.97	4.15	0.054	copper	3.18	153	792
1.12	3.12	2.49	0.117	steel	1.70	254	670
1.38	3.09	1.87		steel	3.27	254	669
1.17	2.61	2.94	0.052	steel	3.72	254	703
1.17	6.42	4.12	0.242	steel	9.46	254	679
1.31	6.38	4.66	0.132	steel	19.00	253	672
1.22	3.20	3.53	0.226	steel	9.49	254	674
1.33	2.80	1.18		steel	9.90	254	678
1.23	2.38	0.62		steel	10.31	254	677
1.23	25.40	4.61	0.010	Lucite	3.20	509	671
1.20	15.94	3.99	0.014	Lucite	3.12	509	661
1.14	12.73	3.37	0.010	Lucite	0.50	254	675
1.20	11.17	3.23	0.015	Lucite	1.68	257	660
1.20	8.03	2.68	0.016	Lucite	1.57	254	662
1.20	6.39	fail		Lucite	1.54	254	664

TABLE 2. Cylinder test data at the three standard wall displacements: 6, 12.5 and 19 mm.

	radius,	thick,	probe	angle,	view,	length,	wall	velocity,	mm/μs
Explosive	mm	mm	no.	deg	mm	mm	6	12.5	19
Semtex H	12.706	2.599	1	5	240	305	1.260	1.380	1.435
#814			2	5	240	305	1.276	1.386	1.442
1.527 g/cc			3	7	240	305	1.268	1.397	1.450
7.88 mm/µs			4	7	240	305	1.249	1.373	1.428
			5	10	240	305	1.272	1.395	1.448
			6	10	240	305	1.250	1.366	1.426
Kinepak	25.384	5.216	1	7	211	458	0.857	0.983	1.003
#851			2	7	262	458	0.878	0.980	1.029
1.237 g/cc			3	7	314	458	0.914	1.030	1.078
5.29 mm/μs			4	7	364	458	0.980	1.089	1.134

TABLE 3. Density studies with a 25.4 mm-diameter copper cylinder.

		Cylinder Weight	Total weight	Explosive Weight	Cylinder Volume	Density
Explosive	Load	(g)	(g)	(g)	(cc)	(g/cc)
Kinepak	Pour Density					
(AN 79/NM	10 lb	935.85	1029.55	93.70	77.34	1.212
21)	20 lb	935.87	1030.40	94.53	77.34	1.222
	Maximum	935.85	1038.23	102.38	77.34	1.324
Urea Nitrate	Pour Density					0.737
sieved 420 μm	10 lb	935.84	998.57	62.73	73.64	0.852
	20 lb	936.04	1004.08	68.04	73.38	0.927
	Maximum	936.02	1005.83	69.81	71.42	0.978

REFERENCES

- P. Clark Souers, Steve Anderson, Estella McGuire, Michael J. Murphy, and Peter Vitello, "Reactive Flow and the Size Effect," Propellants, Explosives, Pyrotechnics, 26, 26-32, 2001.
- 2. P. C. Souers and J. W. Kury, "Comparison of Cylinder Data and Code Calculations for Homogeneous Explosives," Propellants, Explosives, Pyrotechnics, 18, 175-183, 1993.
- 3. John E. Reaugh and P. Clark Souers, "A Constant-Density Gurney Approach to the Cylinder Test," Propellants, Explosives, Pyrotechnics, 29 [2], 124-128, 2004.

- 4. P. C. Souers, Raul Garza, Howard Hornig, Lisa Lauderbach, Cinda Owens and Peter Vitello,
 - "Metal Angle Correction in the Cylinder Test," Propellants, Explosives, Pyrotechnics, 36 [1], 9-15, 2011.
- O. T. Strand, D. R. Goosman, C. Martinez and T. L. Whitworth, "Compact System for High-Speed Velocimetry using Heterodyne Techniques," Rev. Sci. Instr., 2006, 77, 083108.